Archive | Shop Notes RSS for this section

My First (and Maybe Last) Turning Job

Believe it or not, until recently I had never done any turnings. I have been messing with wood for a solid twenty years and never once have I even turned on a lathe. I’ve seen Norm do it a bazillion times on “The New Yankee Workshop” and listened to plenty of other woodworkers tell me about their turning escapades, but I never felt inclined to do it myself. I guess it’s because I am not attracted to work that has turnings in it, so they rarely end up in pieces that I am building and if they do, I pay someone else to do them.

It wasn’t by my choosing, but I did agree to build a bench with multiple turnings after my customer changed her mind on what she wanted. She showed me a picture from Sawkille.com of their “Tall Rabbit” bench and asked if I could make one like it for her with a variation on the length. Since I already had her deposit on the previous project, I didn’t want to say no and send back the money, so I said yes. I looked at it this way, if I consider myself a real woodworker and I am interested in spreading real-world useable woodworking knowledge, then it can’t hurt for me to have more knowledge myself. After all, was it possible that I would consider myself a real woodworker and die one day never having done a single turning? Sounded pretty hypocritical to me.

First off, let me say that the work from the kids at Sawkille is very nice, and though I don’t know them from Adam, I do appreciate the attention to design details that show in their work. I spent a lot of time messing with small details and proportions, and there is no doubt in my mind that they have spent exponentially more time on those same details and slight variations than I did.

This "Tall Rabbit" bench from Sawkille.com is what started my career as a woodturner.

This “Tall Rabbit” bench from Sawkille.com is what started my career as a woodturner.

The picture above is in black, but my customer saw some other variations and decided to go with bleached maple, and though it didn’t seem necessary on maple, bleaching gave the wood a very different look. The maple went from a light yellow-white to bone white with a couple of applications of two-part wood bleach. That part was as simple as could be – the actual turning was not.

Actually, I take that back. The short turnings weren’t too bad. After I turned the first couple and started to get a feel for it, the next 17 went pretty fast and came out nice. I got my time down to about 15 minutes each, which didn’t set any speed records, but it was a pace I could live with. If I did them all at that rate, I could turn all of the pieces in about 6 or 7 hours, which sounded like a fine day of work.

As you might have imagined, I wouldn’t have much to talk about if it all went down like that.

My troubles started when I stepped up to the legs and long stretchers. All of those are in the 24″ range, and about three times as long as the easy-peasy pieces. Out near the ends, where everything is solid, the work went according to plan, but in the middle, I would simply say that it did NOT. No matter how I attacked the middle, whether it be with a light touch or a hard push or maybe a quick jab or a different angle or a different speed or perhaps standing on a different foot or even just squinting a bit more, nothing improved. The piece of maple just jumped and kicked like a bucking bull, and I couldn’t stop it.

Even though I knew my problems were the result of the longer pieces, I imagined that a better turner (or at least someone who had turned at least once before in their life) could overcome the bounciness with better technique. I kept trying different lathe tools and worked slowly to get the pieces as good as possible, and while the overall shape was acceptable, the surface was not. It was nubby, like off-road truck tires, and there were plenty of spots were the wood was just ripped instead of cut. To finish up, I finally dumped the lathe tools and grabbed the sandpaper. I decided to take full advantage of the easy sanding on the lathe and let the paper do the work. Of course, it took awhile, but it was the only way I could come up with to overcome the bouncing spindle syndrome.

After I had a few of the long turnings done, I talked/complained to random shop patrons about my lathe fun and one of them mentioned using a rasp. Apparently, he had more turning knowledge than me (I think everyone does), and he had used the rasp a lot. It made good sense – a rasp is really just super-aggressive sandpaper. Plus, by holding the rasp more parallel to the piece than perpendicular, the rigid flat shape worked great to form the gradual curves with no humps. It wouldn’t have worked so well on intricate turnings, but it worked great in this case.

This is my version of the "Tall Rabbit" bench in bleached maple.

This is my version of the “Tall Rabbit” bench in bleached maple.

After finishing this project, I have a new respect for wood turners and turning. After all, my turnings were simple and still provided quite the challenge. When I think about some of the turnings I have seen, especially in other works, like large hollow vessels, and I consider all of the issues that the turner might face in a project like that, it really makes me appreciate the craft of it. And, though I may never do another turned project in my life, I am glad I gave this one a go.

 

“Standard” Wood Domino Dimensions

Wood dominos (walnut, cherry, hickory, maple)

For Christmas, I decided my daughter needed a bunch of dominos (not to play the game dominos, but to stand up and knock over). I always liked playing with dominos, but was always disappointed when I ran out, so I then decided it should be a big bunch of dominos. After doing a little on-line research, I quickly concluded that a purchase of a big bunch of dominos, even the cheap ones, was going to add up, and since I have a never-ending supply of domino stock in my shop, I set out to make them.

First things first, I needed to figure out the dimensions, and this ended up being the most difficult part of the entire job. I tried searching online, assuming there would be a standard size and I would just copy that, but I didn’t find anything standard. The sizes seemed to be all over the place. Then I thought, “OK, maybe there isn’t a standard size, but there must be some sort of standard ratio or proportions to a domino.” But, as far as I can tell there isn’t, or at least there isn’t anything clearly published that is quick and easy to find. There was nothing with the heading “Standard Domino Sizes,” like I was hoping to find.

Here’s the good news, after scouring the internet for information and making a few hundred myself, I have finally figured out the perfect proportions for what I am calling a standard domino. Now, it seems quite simple and very obvious, but it took me awhile to put it all together (we had to knock over a lot dominos for it to click). The dimension that took some time to nail down was the thickness.

At first, I just guessed at it and made the dominos a thickness that looked in proportion to the length and width. After using the dominos though, it seemed like they were a bit too thick. They look fine and don’t feel unlike a domino, but they don’t fall over very well. They still fall, but they are just a bit too stable and don’t fall with much force. They aren’t bad enough to throw away, but they could be better.

After playing with the dominos more and making structures with them, similar to building blocks, it all came into focus, and I found the magic ratio. When we stacked  the dominos in different orientations, things weren’t lining up and the thickness was to blame. We would stack some dominos on their side, some standing, and some laying down, and the ones laying down didn’t quite line up with the ones on their side. It was close, but not that close. Three dominos laying down were just a bit taller than just one on its side, which made them impossible to use as stable building structure. If they were just a bit thinner, everything would line up when they were stacked and they would topple just right.

So, here is the magic ratio, expressed in a three different ways:

Thickness = X, Width = 3X, Length = 6X

Width = X, Length = 2X, Thickness = X/3

or in actual (standard?) size

Length = 2″, Width = 1″, Thickness = .33″

Standard Domino Dimensions

Of course, if you are going to make your own dominos, they don’t have to be 1″ wide. They could be any dimension you want, but be sure to follow the above ratios for them to really work well.

How Thick to Cut Lumber

One of the first things I needed to figure out when I started cutting rough lumber on a sawmill was what thickness to make it. I could generally determine if I wanted it to be thick or thin, but just how thick or thin? 4/4 lumber is 1″ thick, so it should be rough cut at 1″ thick, right? Not exactly. For hardwoods, the commercial target for 4/4 lumber is actually 1-1/8″, which allows enough margin to produce dried and planed lumber at a thickness of 13/16″ or 3/4″ (3/4″ is acceptable, but the extra 1/16″ of thickness in 13/16″ material allows room for additional planing or sanding after panels or doors are glued up).

The crazy thing is that back then I couldn’t find solid information on lumber thicknesses anywhere and when I referred to the NHLA (National Hardwood Lumber Association) guide, the thicknesses didn’t match up with what I was finding from hardwood producers.  The NHLA guide doesn’t include the bonus 1/8″ of thickness – 4/4 lumber, for example, is specified at a minimum of 1″.

In my experience, 4/4 hardwood lumber cut at 1″ is too thin to consistently produce flattened and planed lumber at 13/16″ thick and will even have trouble producing 3/4″ thick unless the boards are very flat. The only way 1″ thick rough-cut hardwood lumber can plane out completely to 13/16″ or 3/4″  thick is to skip the flattening and just plane the lumber. This will produce thicker finished lumber, but it won’t be flat and straight since the planer will simply follow the curves of any crooked boards. From a woodworkers perspective this is a horrible practice and makes woodworking much more difficult. For this reason, I cut my 4/4 hardwood lumber like all other quality producers at 1-1/8″ thick and don’t accept anything from other sawmills or wholesalers at 1″ thick.

Starting with the lumber measurement and adding 1/8″ for the final thickness is how all of the hardwood measurements go, with a target for 4/4 lumber at 1-1/8″, 5/4 lumber at 1-3/8″, 6/4 at 1-5/8″ and 8/4 at 2-1/8″. These are the commercially accepted numbers, and except for 8/4 lumber the ones that I shoot for. The problem with 8/4 lumber is that since there is more wood it shrinks more than thinner lumber and 2-1/8″ thick just isn’t enough thickness to flatten and plane lumber to consistently finish at 1-3/4″, which is the target for 8/4 lumber. When I flatten and plane batches of 8/4 lumber milled at 2-1/8″ thick it isn’t uncommon for half of the lumber to finish at 1-5/8″ thick instead of 1-3/4″.

Because I think 2-1/8″ is a little thin, I commonly cut 8/4 lumber at 2-3/8″ thick. 2-3/8″ thick is twice that of 4/4 lumber, plus the 1/8″ saw kerf that would have been between the two imaginary cuts. The extra thickness not only impresses the ladies, but it assures a final dried and planed thickness of at least 1-3/4″ and officially uses no extra wood when compared to cutting 4/4 lumber (to keep things simple, a friend of mine simply calls it “double four quarter” lumber). As I mentioned though, 8/4 is commercially sawn at 2-1/8″ thick, so if you cut it at that measurement it isn’t wrong, 2-3/8″ is just better for the end user (none of my customers have ever been upset that the wood is a little thicker).

The previous examples were for hardwoods, but softwoods, like white pine, can be cut thinner since they shrink less and dry straighter overall, plus softwoods are commonly used for construction purposes instead of furniture, which don’t need the extra thickness for secondary planing or sanding, so 3/4″ final thickness is common for 4/4 softwood lumber. For 4/4 white pine for example, I cut 1″ thick, which will finish at 3/4″. And, for cedar, which shrinks very little and is very straight and stable, I will go even thinner, down to 7/8″. In general though, softwoods are cut on the standard quarter scale with 4/4 lumber measuring 1″.

The scale below shows the target hardwood lumber thicknesses for commercially produced, rough-cut lumber and their planed thickness counterparts. These are the sizes you should expect to find when shopping for hardwoods.

Hardwood Lumber Measurements

Quarter-scale measurement    Rough cut thickness    Planed thickness
4/4                                                1-1/8″                            13/16″
5/4                                                1-3/8″                            1-1/16″
6/4                                                1-5/8″                            1-1/4″
8/4                                                2-1/8″ (or 2-3/8″*)         1-3/4″

*2-3/8″ is a better thickness to consistently finish at 1-3/4″ thick, but 2-1/8″ is the norm.

Let It Sit or Use It: Acclimating Wood

“Be sure to let the wood acclimate before you use it.”

That’s what every knowledgable woodworker will tell you about wood. After all, it has to be in equilibrium with its environment to ensure a good, long-lasting result. I personally preach this to everyone I meet, if they are willing to listen (and sometimes when they are not). But, it’s not as simple as just letting the wood sit before you use it. Sometimes letting the wood acclimate to its new environment is actually a bad idea.

The logic behind letting wood acclimate before you use it is to have all of the craziness of wood movement happen before it is installed. If the wood is moved to a dry environment it is going to shrink and if it is moved into a wet environment it is going to expand. This “dry” or “wet” description is relative though – wood moisture in relation to the environmental moisture (humidity).

I often think of wood trim and casework when I think of acclimating wood to its environment, with a close second being hardwood flooring. In a perfect world, I would install both of these items on the 2nd of February after the heat has been running in the house for months and everything is shrunk up as much as possible. In this shrunk up world, I want my flooring or trim to be super dry and super shrunk so everything fits nice and tight and only tightens up as summer rolls around and the humidity rises. However, the opposite is usually true. I seem to only install woodwork around July 20th, when the humidity is a billion percent and everything is fat, which means in the winter everything will shrink and gaps will appear.

“Well pal, if you weren’t such an idiot and you let that wood acclimate before you installed it, everything would be great and the gaps that open in the winter would be a thing of the past.”

Not true, I say. Remember, the dry and wet thing is relative. Letting the wood acclimate in winter to a super dry environment is good. Your wood will most likely be shrinking (it definitely won’t be expanding if the heat is running all day long). You will install everything tight and it will only get tighter as the summer rolls around. This is good – in winter.

In summer, the opposite is true. Say that you take your wood flooring that is dried to 6% to a job site in the summer. Your flooring is shrunk, it is small and ready to be installed. Yes, it will swell up in the humidity of summer, but you want it installed when the wood is shrunk so it will expand and only tighten up. Letting it acclimate in the summer only ensures that you are installing fatter wood, which is guaranteed to open up in the winter. Flooring will show gaps between boards and casework will open up at the seams.

I think the whole acclimation just-do-it, don’t-think-about-it thing started because there are so many chances in life to have wood that is a little too wet going in to an environment that could use drier wood. This, perhaps, isn’t the case in the deep south, but I would say it is the norm for much of the country. Wood has too many opportunities to pick up extraneous moisture before it makes it into its final resting place. From sawmills and distributors to retailers, lumber is stored in environments that are not climate controlled, possibly for quite a while, picking up moisture the entire time. And, even after it makes its way into your hands it may spend time in a garage, shed or job site that isn’t climate controlled.

The default in all of these cases is to get the wood inside, in a climate controlled environment and let it acclimate to the environment, but what we really mean is to let the wood dry. I have never had an issue with interior woodwork being too dry and causing a problem after it swelled up. Again, in the high humidity of the deep south this might be a problem, but for most of us wood can’t be too dry. It is almost always a little wet.

So, what to do in summer. Say you’ve got wood that just came out of the kiln and is dried to a target of 6-8%. Do you take it to the job site and let it acclimate, knowing that it is going to pick up moisture and get fatter before you install it, just to shrink again in the winter? I say, “Heck no!” It makes zero sense to let the wood acclimate in this scenario. If the wood is dry, put it in – and fast.

I have found this Wagner MMC 220 pinless moisture meter to be the most reliable and easiest to use. It gives deeper more rliable readings than a pin-type meter without damaging the wood.

I have found this Wagner MMC 220 pinless moisture meter to be the most reliable and easiest to use. It gives deeper more rliable readings than a pin-type meter without damaging the wood.

The key in any scenario is knowing the moisture level of your wood and what the acclimating environment is going to do to it. A reliable moisture meter is a good place to start. Test your wood, and if it is dry based on your area of the country, start using it. Refer to the chart at the end of this post to see what moisture content your wood should be. If you don’t have a moisture meter, assume that the wood is a little wet (since it usually is).

In the dead of winter letting the wood acclimate is always a good idea because it can’t really cause a problem. It won’t improve your lumber if it is already dry, but it won’t hurt it, and it will only help wet lumber. Winter is by far the best time of the year to install interior woodwork.

In the spring and fall acclimating wood is likely to have little to no effect. Heat and air conditioning will be running less, windows will be open, and humidity levels will be closer to outdoor levels. Only let your wood acclimate during this time of year if you know it is wet and could benefit from some drying. If it reads as dry on a moisture meter and/or hasn’t spent awhile in an environment without any climate control, start using it.

Acclimating your wood in summer only really makes sense if you know that your wood is extra wet, either because your moisture meter told you so or because the lumber was stored in an environment that wasn’t climate controlled. If your lumber is in a condition that acclimating it during the summer makes sense, you may want to reevaluate your situation. In this case, additional drying, not just acclimating, may be necessary. Summer is the worst time to install interior woodwork.

Use common sense when deciding whether or not to acclimate wood. If the environment is extra dry, no matter the time of year, let it acclimate. If humidity levels are extra high, it probably makes sense to start using the lumber right away. Any other times, when the humidity is moderate, you are probably just kissing your sister (getting no benefit) and possibly making the wood worse by letting it acclimate.

This chart shows the high (summer) and low (winter) moisture levels for interior wood throughout the country. In a perfect world, your wood will read at the lower number when installed.

This chart shows the high (summer) and low (winter) moisture levels for interior wood throughout the country. In a perfect world, your wood will read at the lower number when installed.

Flatsawn Lumber Is Not So Flat: How To Fix Cupped Wood

Quartersawn lumber stays flat, but flatsawn lumber does not (ironic, I know). Flatsawn lumber cups during the drying process and it even cups after it’s dry if not cared for properly. Wide boards are especially fussy and panel glue-ups can be a giant pain in the tuchus.

I deal with cupped lumber all of the time, and I was reminded of this common problem when a friend of mine was trying to figure out why his wide panel glue-ups had cupped. Whenever I am asked about this, my first question is always, “How did you store your panels after they were assembled and surfaced?” The answer is usually that they laid the panels flat on a table. A quick bit of logic says that a flat panel on a flat table should stay flat, but that isn’t how it works, at least not with solid wood.

Solid wood needs to expand and contract evenly, on both sides, to stay flat. If the panels are placed flat on a table, they can breathe on one side but not on the other. The bottom side will remain as dry or wet as it started, but the top side will shrink or swell depending on the ambient humidity in the room. Usually, this  problem arises when lumber is moved from a non climate-controlled environment (like a garage or barn) into a dry, climate-controlled shop, so the top of the panels will shrink and the lumber will cup up and away from the table as it dries.

This glued up panel couldn't breathe on the bottom since it was flat on a table. The top dried out a touch after processing and the panel cupped.

This glued up panel couldn’t breathe on the bottom since it was flat on a table. The top dried out a touch after processing and the panel cupped.

 

In a perfect world, rough lumber would be stored for months in the exact same, hermetically sealed environment where the processing is going to happen, but since we don’t live in a bubble, that’s not really possible. Even if you store the lumber in your climate-controlled shop and build in your climate-controlled shop, the climate still changes – in small increments from day to day and more dramatically from season to season. And, since you know that these changes will make your wood expand or contract, it is even more imperative to store surfaced lumber and panels properly to make sure your flat work stays flat.

Again, storage is the key, and there are two approaches to keep things flat. The most common way is to store the wood so that it can breathe on all sides. This is done by keeping it stacked flat on sticks or by storing it upright at an angle, perhaps leaning against a wall. The other approach is to not let the wood breathe at all and keep it wrapped or covered in plastic. I commonly use both tactics, leaning panels against the wall for short-term storage, usually during a day of processing and then covering them with a sheet of plastic for longer storage. Note that dramatic changes in flatness can happen in just hours if the conditions are right (or wrong, in this case).

From fresh sawn lumber (in this photo) to finished product, storing wood on sticks is the best practice.

From fresh sawn lumber (in this photo) to finished product, storing wood on sticks is the best practice.

For short term storage (hours to days) standing wood upright is a great choice. Make sure air is able to get to all sides.

For short-term storage (hours to days) standing wood upright is a great choice. Make sure air is able to get to all sides.

Now, let’s say you didn’t follow this advice and your panels developed a cup in them. They were planed and sanded flat and ready to be put into the door frame before you left the shop, but when you returned the next morning they had a noticeable rock. Since everything was already to final thickness, what options do you have? There is no meat left to machine flat and the wood can’t really be bent back into shape… or can it?

No, it can’t really be bent back, but it can be coerced back by doing the reverse of what caused the cup in the first place. The key is understanding the cause of the problem.

First, you need to identify the wet side and the dry side. If you are looking at a cupped panel from the end and it is shaped like a rainbow with the legs down, then the bottom side is the drier side. It is drier, tighter and smaller, and the outside edges are pulling together. The top side is wetter, looser and bigger, and its outside edges are pushing apart. These two forces, one pushing and one pulling, are working together to make a cupped panel.

After you have identified the problem, the solution is to treat the panel to the opposite conditions. This can be done by drying the wet side or wetting the dry side, but since almost all problems in woodworking are from wood that is too wet (at least around here), you should choose to dry the wet side.

I recommend to use a hairdryer for convenience, but on nice sunny days you can put the sun to work for you too. Both work fine, but the sun can fix a lot of panels at a time, quickly and quietly. The sun works great because it focuses all of the drying energy on just one side, and it focuses it on the entire side, not on just one spot like a hairdryer. (Be aware that some woods, like cherry, change color quickly in the sun and may be a better choice for inside drying).

The process is simple. Put the dry side down on a flat surface, one that restricts air movement across the bottom of the wood. The wide board or panel will be sitting like a rainbow, with the two legs down and the center up. Then just proceed to dry the top side, either with the sun or a hair dryer. If you are not in a hurry, you can simply move the wood to a drier environment, like the inside of your house on a cold winter day and let it dry out on the top side overnight. Any way to dry the top side while the bottom remains as it is should do the trick.

Use a hair dryer (like in this photo) or put the panels out in the sun with  the wetter side of the wood up to reverse the cup.

Use a hair dryer (like in this photo) or put the panels out in the sun with the wetter side of the wood up to reverse the cup.

Keep an eye on the panels and check them regularly. With a hair dryer you will probably end up propping it up in a position to blow on the panel and check it every thirty minutes. In the sun, check the progress every hour. If you just move them to a drier environment, check them once or twice a day. Even with regular checks it is not uncommon to go too far and overcorrect. If you let the wood bake too long on one side and it starts to cup the other way, just flip it and dry the other side. Eventually, you will get a feel for how long it takes and end up with a flat panel, and now a drier panel (both good things).

Follow these guidelines for flat wood:

  1. Build with quartersawn lumber. Quartersawn wood doesn’t cup.
  2. Store lumber in the rough. If the lumber goes wonky you will still have extra thickness to machine flat.
  3. Store lumber and build in an environment similar to where the piece will end up.
  4. Quickly build with lumber after it is machined. Don’t give it a chance to move on you.
  5. If you can’t build immediately, store wide boards and panel glue-ups properly. Give them air on all sides or no air at all.
  6. Make sure assembled furniture stays flat by finishing both sides of solid wood panels the same. This is especially important on wide glue-ups like tabletops.

Remember, wood moves and changes size all of the time. It is your job as a woodworker to understand how these changes happen, how to prepare for them and how to control them. And, luckily, in the case of wide wood, you may even have the chance to correct them.

How to Make Realistic Worm Holes in Wood

If you want to make something look older, just add some worm holes. Sounds simple enough, but there is a major difference between just poking holes in the wood and making the holes look authentic. Now that the all natural, rustic wood look is in style, even new, or at least not very old wood often benefits from more character, and I am here to show you how to really do it.

First off, let me assure you that I have a lot of experience in this field. I often build pieces that need to be “wormed up” in some regard, either to make new wood look old or to make old wood look even older. Especially on projects like beams and mantels, worm holes help add a lot of age to a piece.

Much of the wood that I use already has worm holes in it because I let the logs sit awhile outside before I mill them into lumber (sometimes even on purpose), so I have a head start, but there will still often be spots without bug holes where the wood needs a little extra love, like in the following video:

To get things started, it helps to first look at truly worm-eaten wood. There are consistencies even in what looks to be very inconsistent patterns. Here are a few principles that hold up in most wormy wood:

1.) Hole sizes vary: Even similar-sized holes are not the same. Your method for creating holes should easily produce random results.

2.) Worms tend to focus their efforts: Holes will usually have an area of focus, with more holes in the center of an infected area fading out to fewer holes.

3.) Not all holes are perpendicular to the surface:  While most holes are just that – holes, many are oblong and some are more like trails.

4.) The bugs that make the worm holes often enter around defects in the wood: Soft or punky wood, spalted wood, cracks, and sapwood are all areas that will focus worm activity. Good, strong, solid heartwood is the last area to be bug infested.

5.) Small holes outnumber the big ones: Older wood that has been attacked by multiple insects will have lots of tiny holes (1/16′ diameter), some medium-sized holes (1/8″ diameter), and just a few big holes (up to 1/4″ diameter).

Here are some photos of authentic worm holes. If you can copy any these patterns you will be off to a good start.

This section of pine shows a nice array of hole sizes from large to small. Notice how the long holes follow the grain.

This section of pine shows a nice array of hole sizes from large to small. Notice how the long holes follow the grain.

This section of hickory has holes that make short lines. They are also very dark and almost seem stained.

This section of hickory has holes that make short lines. They are also very dark and almost seem stained.

This section of maple shows a mix of holes and short trails.

This section of maple shows a mix of holes and short trails.

The holes in this white oak are larger and have stains around them where the wood has started to decay.

The holes in this white oak are larger and have stains around them where the wood has started to decay.

 

Here are some of my tricks for achieving realistic results:

  1. A scratch awl, normally used for marking projects, is the perfect tool for making small to medium-sized holes, after being sharpened to a long, tapered point.

    A scratch awl, normally used for marking projects, is the perfect tool for making small to medium-sized holes, after being sharpened to a long, tapered point.

    Small holes. You’ll be tempted to use a drill bit for the smallest holes, but it isn’t the best choice. Tiny drill bits break easy and the size is too consistent. Plus, they pull out wood fibers that make the edge of the holes fuzzy. Instead use a nail or a scratch awl sharpened to a long fine point. A scratch awl is the best choice because it can be used without a hammer and produces speedy results. The long point will make different sized holes depending on how deep it is pushed into the wood. Push the scratch awl in the wood at different angles and different depths.

  2. Large holes. Use a twist drill bit for the larger holes. Be sure to drill deep enough that you can’t see the bottom of the holes and to vary the drill angle. Put the bigger holes in the softer wood. Sapwood, punky wood and areas around defects are a good place to start. Mix up the sizes in the 1/8-3/16″ range for a more natural look.
  3. Oblong holes. Some of the larger holes tend look like small jelly beans. Drill in fairly deep and then use the side of the drill bit to cut a short trail. The result is similar to two holes drilled right next to each other.
  4. Trails. Trails are often left just under the bark in bug infested logs and sometimes inside the log. Use a twist drill bit about 1/8-3/16″ in diameter and drag the bit in different lengths of crooked lines. Be sure to make some of the areas have more depth. Think of the trail as a river with shallow areas and deeper pools. Trails can have one, both or none of the ends finishing in a hole. Mix it up and have a few ends disappear into holes made with the same drill bit.

One of the most important things to remember when making worm holes or using any other techniques to age wood is to really go for it. You won’t destroy a piece of furniture by adding a few more holes or dents, and you can only miss by doing too little to the surface.

I often see furniture, especially mass-produced furniture, that will have some sort of distressing that looks like it was just phoned in. Usually, someone quickly takes a chain to the surface or pokes a few holes and calls it a day. Don’t do that. Pay attention to Mother Nature’s work and try to duplicate it. And, most importantly, have fun doing it.

 

 

Barbie and Dan Lend a Hand Holding a Door Open

This past year I got some help in the shop and on installations from Dan, a friend of mine that entered the carpentry/woodworking field as a union framing carpenter. He is a hard worker, gets things done quick, cares about the quality of his work, and most importantly, taught me a few of his tricks.

His most recent bit of advice saved me a day or two of work and only took me minutes to complete (I really like that guy).

I have a relatively new house. It’s about three years old, and overall, I am happy with it. Since the beginning, though, there was one thing that drove me crazy, and I could never figure out an easy solution. My daughter Mira’s bedroom door was hung way out of plumb, it is leaning into the opening about 3/4″, and if left alone, it will swing almost closed. You open the door and it closes on its own.

I am sure the carpenter that installed the door let it slide because the door casing butts into another door casing and the straight casing looks better than casing with an angle cut. At least that’s what I tell myself. Truth is, he was probably flying along throwing up doors and plumb wasn’t too much of an issue. Either way, it is still annoying.

The only way I could see to fix the problem was to rehang the door. That meant remove the casing, remove the door frame and start over. That also meant hours of finish work including caulking and painting. And, after all of that work, I would still have an unsightly, uneven line in my casing. Not to mention that I had an almost new house that I just wasn’t in the mood to tear apart. What to do?

While I waited for divine inspiration to strike, I came up with a couple of temporary fixes. I started with a small stack of books which did not make it through Mira’s approval process, and then I moved on to a regular old brown doorstop, but lacking the mandatory pink color made that one a no go as well. One of my favorite solutions was to get someone to simply hold the door open. I chose one of our family friends that is always at the house without much to do (that one made me chuckle a bit).

Barbie did a great job of holding the door open.

Barbie did a great job of holding the door open.

Amazingly enough, Barbie did not get cleared either and was quickly given her walking papers. So the door swung shut, again and again. We lived with it, and lived with it, and kept living with it, and it just got more and more annoying.

One day when I was working with Dan, I mentioned the stupid door and the stupid carpenter and the stupid level that he didn’t bother to use. Dan casually said, “Just bend the hinge.”

My first thought was, “What?”

That was much too simple. I needed to get in there and take care of this professionally, and it didn’t include just bending the hardware. His plan was too pedestrian for me.

“No,” Dan said, “Just hit it with a hammer a couple of times. No one can tell and the door won’t swing shut.”

That’s all it takes. Instead of lubricating the hinges and making sure they swing easily, just do the opposite. Put a hinge, or in my case, two hinges in a slight bind, so there’s a touch of resistance.

I started by heading to the garage with the first hinge. I put it down on the concrete and gave it a whack on the barrel, but it didn’t make a difference. It didn’t bend and it didn’t bind. I hit it a little harder and still nothing. Then I really hit it. Finally, it started to offer some resistance, but not much. I ended up flattening the barrel down the entire length, but just a bit. I didn’t want it to look deformed, just a little out of round and not noticeable.

Hit along the barrel of the hinge until it binds, but still operates.

Hit along the barrel of the hinge until it binds, but still operates.

I reinstalled the the hinge, but it wasn’t enough. The door almost stayed open, but it still wanted to close. I took a second hinge out to the garage and treated it the same way, flattening the barrel just a touch down the entire length. That made all the difference.

Now the door looks good, stays open and works like any other regular door. And, the fix only took a few minutes (probably less time than it took to read this post). Thanks, Dan and Barbie, for all of your help.

 

Follow

Get every new post delivered to your Inbox.

Join 485 other followers

%d bloggers like this: